skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chattopadhyay, Soham"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Interstitial dumbbell-mediated diffusion can affect segregation and precipitation properties of solutes in alloys under irradiated conditions. Accurate computation of transport coefficients for dumbbell-mediated diffusion thus becomes essential for modelling solute segregation under irradiation. In this work, we extend the Green’s function approach, a general numerical approach, to compute accurate transport coefficients for interstitial dumbbell-mediated mechanisms in the dilute limit for arbitrary crystalline systems with non-truncated correlations in atomic diffusion. We also present results of tracer correlation factors, solute drag ratios and partial diffusion coefficient ratios in iron and nickel-based alloys computed with our approach, compare our results with existing results in the literature, and discuss some aspects of correlated solute-dumbbell motion. 
    more » « less